<G

iriusrisk

Technical Countermeasure
Report

User Accounts

Report generated by: Administrator admin

Unique ID: user-accounts

Workflow State:

Index

Summary
Architectural Diagrams

Required Countermeasures
Component: APl GW

Component: MySQL

Implemented Countermeasures

Component: APl GW
Component: MySQL

Rejected Countermeasures
Component: APl GW

Countermeasure Test Results
Failed
Component: APl GW
Component: MySQL
Passed
Component: API GW
Not tested

Component: ELB - Elastic Load Balancer

Component: MySQL

Appendix A: Countermeasure Details

Component: API GW

Component: ELB - Elastic Load Balancer

Component: MySQL

NS

iriusrisk

Vo

iriusrisk
Summary
Shown below is a brief description of the product and summary analysis of the risks.
Product name: User Accounts
Unique ID: user-accounts

Product description:

Business unit: bu_user_admin

Owner: Administrator admin

Technical Countermeasure Report
User Accounts

NS

iriusrisk

Architectural Diagrams

OMZ
1 |
[
i ELE - Elastic i
' Load Balancer I
[
1 |
[
- - - - - - - -I
Link Laver
1
1 1
1 1
i APl GW I
1 1
1 1
1 1
1
- - - - - - - -I
Data Laver
1
[]
[] 1
i MySOL I
[1
[] 1
1 |
[] 1
e = = e = = o= = ==l
Filename: irius-risk-diagram-architecture-image.png
Username: admin Date uploaded: 09-May-2019 15:20:22

Technical Countermeasure Report
User Accounts

Required Countermeasures

iriusrisk

Component: API GW
Countermeasure name Test result Related threats
Log details of user actions within the Not Tested
system « Attacks against the authentication system may go undetected
Log and reject all data validation Not Tested
failures Attacks against the authentication system may go undetected
Encrypt dat'a between the client and Not Tested * Attackers gain control of the connection through a Man In The
server/service .
Middle attack
Use a synchronised time source Not Tested » Attacks against the authentication system may go undetected
g?;fta;ﬁjzn data received from the Not Tested « Attackers gain access to the system through Server Side Code
Injection
Log the backend TLS connection Not Tested
failures Attacks against the authentication system may go undetected
Ensure the integrity of the logging » An attacker injects, manipulates or forges malicious log entries
Not Tested .) : . B .
system in the log file, allowing him to mislead a log audit, cover traces of
attack, or perform other malicious actions
L|m!t the numbgr of acc.o.unt.s with . » An attacker injects, manipulates or forges malicious log entries
privileges allowing modification Failed .) : . B .
. . . in the log file, allowing him to mislead a log audit, cover traces of
and/or deletion of audit logs files . .
attack, or perform other malicious actions
Ensure that the client-side and the
server-side are using the same Not Tested « Attackers gain access to the system through Server Side Code

encoding style

Injection

Component: MySQL

Countermeasure name

Use prepared statements for all

Test result

Related threats

service

) Not Tested Attackers gain unauthorised access to data and/or systems
database queries through SQL Injection attacks
Apply required security patches to the Not Tested Attackers gain access to unauthorised data by exploiting

vulnerabilities in the service

Technical Countermeasure Report
User Accounts

Implemented Countermeasures

Component: API GW
Countermeasure name Test result Related threats
Escape meta-characters from un- P » An attacker injects, manipulates or forges malicious log entries
assed .) : h B .
trusted data in the log file, allowing him to mislead a log audit, cover traces of
attack, or perform other malicious actions
Do not write secrets to the log files Not Tested » Data leakage or disclosure to unauthorized parties
Develop a log retention policy Not Tested » Data leakage or disclosure to unauthorized parties
Restrict actions of users that follow Not Tested Attackers subvert the intended workflow of the application in

unusual patterns.

order to perform unauthorised operations

Component: MySQL

Countermeasure name

Require authentication before

Test result

Related threats

necessary

presenting restricted data Failed th(-,: Sgtrt\igléers obtain unauthorised access by connecting directly to
Access the data store from an
account with the least privileges Not Tested « Attackers who compromise the application or application server

could directly access and modify the data store

Technical Countermeasure Report
User Accounts

Rejected Countermeasures

Component: API GW

Countermeasure name Test result

Implement application and network

Related threats

Reason

This Component is not planned
to be behind the WAF, we

o Not Tested « Denial of service through - .
rate limiting . cannot implement this on a
resource exhaustion .
feasible way.
. This Component is not planned
D nd notify th f . B
etect and notify the usage o « Attackers subvert the intended to be behind the WAF, we

automated tools or unusual Not Tested

behavior

workflow of the application in order to
perform unauthorised operations

cannot apply this
countermeasure.

Technical Countermeasure Report
User Accounts

iriusrisk

Countermeasure Test Results

Failed
The below table shows all countermeasures with failed test results.

Component: API GW

Description

Limit the number of accounts with
privileges allowing modification and/or
deletion of audit logs files

Limit the number of account with privileges to modify and/or delete audit logs files.

Component: MySQL

Name Description

The application should ensure users have undergone an Identification and
Verification (ID&V) process before allowing access to secret, sensitive or otherwise
restricted data. For less sensitive but still restricted data, simple verification of the

location of the user may suffice (e.g. IP restrictions).

» For non-sensitive but non-public data, access could be restricted by IP address,
for example limiting access to internal networks, workstations, or gateways

» For more sensitive data, TLS client-side certificates may be appropriate

* Where secret or other sensitive data is handled, a full authentication process to
identify and validate users with single or multi-factor authentication may be required

Require authentication before
presenting restricted data

Technical Countermeasure Report
User Accounts 8

iriusrisk

Passed

The below table shows all countermeasures with passed test results.

Component: API GW

Description

If untrusted data, including any data received from the client side of a connection is
directly written to a log file, then this data could contain newline or other meta-
characters that would allow an attacker to forge log entries.

Such meta-characters should first be escaped or removed before the data is written
to the logging system.

Escape meta-characters from un-trusted
data

Technical Countermeasure Report
User Accounts

Not tested

The below shows all countermeasures with not tested results.

Component: API GW

Log details of user actions within the
system

To maintain proper accountability, logs should be maintained with sufficient
information to track user actions within the system. These logs should be forensically
sound, non-repudiable, and contain comprehensive details about activity. While the
exact data for an event may vary, the following should be captured at a minimum:

» Timestamps against a proven external source (e.g. an NTP server)

« Origin, with this field we mark if the logs are provided by a trusted or untrusted
source.

» Event, status, and/or error codes (with sensitive data masked as appropriate or
not introduced in logs)

» Service, command, application or function name and details

» User or system account associated with an event

» Devices used (e.g. source and destination IPs, terminal session ID, web
browser, etc)
Source: https://security.berkeley.edu/security-audit-logging-guideline

Log and reject all data validation failures

Data validation failures, together with access control violations, are symptomatic of
malicious activity where an attacker is attempting to subvert the protections in place.
It is therefore likely that unexpected input detected by the application relates to an
attack. Rejecting and logging such activity, and ideally terminating the session,
increases the likelihood of detecting and inhibiting structured attacks against the
application.

* Log all validation failures when rejecting requests.

» Ensure logged data is appropriately sanitized and encoded to prevent attacks
against the logs and subsequent access to them.

» Terminate the offending user session to inhibit further attack.

» Ensure errors returned to the client-side are generic to prevent an attacker
enumerating the defenses in place or gaining knowledge about the back-end.

Encrypt data between the client and
server/service

Data passed between the client and server should be protected by encryption in
transit.

» Implement cryptographically strong TLS end-to-end encryption between the
client and server, terminating within a secure environment on the server-side.

» Consider use of client certificates to prevent interception of (or man-in-the-
middle attacks on) the encrypted connection.

« Alternatively, asymmetric (public-key) encryption could be utilized, although a
recognized, proven, and tested implementation/library should be used

Do not write secrets to the log files

The logs may be accessed by attackers and in order to protect sensitive data, no
such sensitive data should be included in the logs

Prevent unauthorised access to source
code through the service

Access to the source-code for the application can aid an attacker in determined bugs
or vulnerabilities in the code or logic. For closed-source projects it is therefore
important to control and restrict access to the source. Application services may
unexpectedly expose code, for example a service providing files to a user could be
manipulated to access source code if implemented insecurely.

» Ensure that source code is not inadvertently disclosed through misconfiguration
or vulnerabilities in the service.

» Check that configuration files are not downloadable directly from the service,
and cannot be read and viewed through the service itself.

» Ensure backups, operating system, and version control artifacts do not expose
code.

Technical Countermeasure Report
User Accounts

10

https://security.berkeley.edu/security-audit-logging-guideline

NS

iriusrisk

In order to correlate logs and data from different internal and external systems, and
to preserve forensic quality of the logs, it is important a unified and trusted
synchronized time source is used throughout the environment.

+ Servers should be synchronize to an internal or external NTP server

» The centralized source should in turn use (or be) a trusted central time source.
This control is critical in identifying application events (including attacks) through
logging, and in conduction post-event analysis, in particular to track the whole user
Use a synchronised time source (or attacker) journey through the system should it be compromised.

It is good practice to use the concept of Indicators of Compromise (loC) should be
used to detect possible situations in which the system has been compromised and to
give an appropriate response. loCs are often tracked through logs, and accurate
time is often essential.

A number of attacks rely on brute-force techniques to send large volumes of
requests to enumerate or attempt to exploit flaws in an application, for example,
sending common passwords to multiple target accounts within an application. By
profiling normal traffic volumes, and applying rate limiting, the application can be built
to actively mitigate such attacks.

» Connection rate-limiting based on the source IP address can be used to restrict
attacks against the authentication or registration systems. Multiple failures (or
attempts) from a single IP should result in temporarily blocking or dropping traffic
from the source. Note however that some corporate and ISP environment may place
multiple valid and discrete clients behind the same IP address, resulting in false-
positives.

» Attackers may use botnets and other IP masking techniques to deliver attacks
from multiple sources to avoid IP based rate-limiting. To mitigate this class of attack,
Indicators of Compromise should be monitored (for example a higher rate of login
failures than usual), and appropriate actions taken. For example, when the
application detects active brute-force attacks, a Web Application Firewall (WAF) or
other intermediate devices could be used to block attacks sharing a signature from
Implement application and network rate | pattern matching or deep packet inspection (e.g. HTTP headers or common
limiting passwords across multiple accounts). Similarly, the application could respond by
requiring a CAPTCHA, cookie, or Javascript challenge when an attack is detected.

Remediation:
Implement the mechanisms to lockout accounts:

* When the application detects a set number of failure login attempts, the account
shall be locked for a certain time period.

» When the application detects that an account is locked more times than usual,
this account shall be disabled. A disabled account shall only be restored by an
administrator.

» When the application detects active brute-force attacks, the application shall
require a CAPTCHA, cookie, or JavaScript challenge.

Technical Countermeasure Report

User Accounts 11

iriusrisk

side

Validate all data received from the client

All data received from the client-side should be considered tainted and a potential
risk, regardless of the source or transport method. For example, while hidden form
fields, cookies, or other headers may be obfuscated from a user, along with
parameters passed in ViewStates or other encapsulated forms, these can be
modified by the user at the client-side in memory, or in transit on the network.
Similarly, data passed from binary or compiled components can be modified in situ or
in transit.

Furthermore, encryption only secures the data in transit between the two ends of the
encrypted tunnel (one end of which is typically controlled by the client); data passing
through the link may still be malicious.

As such, all data from the client side must be subjected to strict validation,
sanitization, and encoding against expected syntactic and semantic criteria.

» Define a specification of the data that is expected at each input; both the syntax
(e.g. alphanumeric only) and semantics (e.g. a word of between 1 and 25 characters,
or a specific list). As an example of business rule logic, "boat" may be syntactically
valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue."

» Implement a 'known good' or white-list approach, where only inputs that meet
the strict criteria for each input are accepted, and reject, transform, or encapsulate
any non-compliant data.

» While useful for identifying malicious content, do not rely on looking for specific
malformed or attack payloads (blacklists). It is almost impossible to maintain a
comprehensive and accurate blacklist due to the complexity and evolving nature of
attacks, opportunities to obfuscate payloads, and changes to the code's execution
environment. As noted, blacklists can be useful for detecting and logging potential
attacks, or determining which inputs are so malformed that they should be rejected
outright.

« Validate all data received from the client, including values such as HTTP
headers and cookie values if these are used as input on the server side, X- headers,
and other platform specific data objects passed between the client and server.

Develop a log retention policy

Develop a log retention policy to identify storage requirements for device logs and
implement procedures to ensure that the audit logs are available for a security
response in the case of incident or investigation.

The audit logs must be collected for the last 30 days in easily accessible storage
media. Older logs should be archived in a protected storage and should be
accessible in the future as required for incidents or investigations.

Log the backend TLS connection
failures

Implement functionality to record backend TLS connection failures and include these
in the logs.

Ensure the integrity of the logging
system

Ensure Log integrity for the application generated logs, such as storing logs on write-
once media, forwarding a copy of the logs to a centralized SIEM or generating
message digests for each log file.

Detect and notify the usage of
automated tools or unusual behavior

Don't allow users to manipulate a system or guess its behavior based on input or
output timing and detect the usage of automated tools or unusual behavior, such as
actions not performed in reasonable "human time" or other abnormal time patterns.

When the usage of automated tools is detected, the application shall respond with
denying the access and notifying the security group.

Restrict actions of users that follow
unusual patterns.

Restrict actions that users can do outside of the approved/required business process
flow.

This is important because without this safeguard in place attackers may be able to
bypass or circumvent work-flows and checks allowing them to prematurely enter or
skip required sections of the application potentially allowing action/transaction to be
completed without successfully completing the entire business process, leaving the
system with incomplete back-end tracking information.

Ensure that the client-side and the
server-side are using the same
encoding style

Ensure that the client-side and the server-side are using the same encoding style.

Technical Countermeasure Report
User Accounts

12

9

NS

iriusrisk

Component: ELB - Elastic Load Balancer

Name Description

For greater communication privacy Elastic Load Balancing allows the use of Perfect
Forward Secrecy. This feature provides additional safeguards against eavesdropping
on encrypted data, through the use of a unique random session key, and therefore
prevents the decoding of captured data, even if the secret long-term key is

Use the Perfect Forward Secrecy compromised

feature

To begin using Perfect Forward Secrecy:
Configure your load balancer with the newly added Elliptic Curve Cryptography
(ECDHE) cipher suites.

Within Elastic Load Balancing ensure the use of newer and stronger cipher suites
when establishing a new connection supporting the Server Order Preference option.
When this option is selected, the load balancer selects the first cipher in its list that is
in the client's list of ciphers.

Remediation:
To enable Server Order Preference:

Open the Amazon EC2 console.

Select the Server Order Preference Under LOAD BALANCING, choose Load Balancers.

option

» Select your Load Balancer.
» On the Listeners tab, for Cipher, choose Change.

* On the Select a Cipher page, select Custom Security Policy.

For SSL Options, select Server Order Preference.

* Click Save.

A load balancer takes requests from clients and distributes them across the EC2
instances that are registered with the load balancer (also known as back-end
instances).

A listener is a process that checks for connection requests. It is configured with a
protocol and a port for front-end (client to load balancer) connections

Note: an HTTPS listener configured on the ELB is not mandatory if you are
terminating SSL connections directly on the Web Tier EC2 instances, and using a
TCP listener on the ELB (TCP pass-through)

Use HTTPS listener for Web Tier ELB
Using an HTTPS Elastic Load Balancer listener will make sure the application traffic
between the client and the Web Tier ELB is encrypted over the SSL\TLS channel.

Remediation:
Using the Amazon unified command line interface:

« If the ListenerDescription field is missing, add a new HTTPS listener configured
with a SSL\TLS certificate (the listener forwards traffic to the backend instances on
port 80, but this can be modified by editing InstancePort=80):
aws elb create-load-balancer-listeners --load-balancer-name <web _tier_elb> --
listeners
Protocol=HTTPS,LoadBalancerPort=443,InstanceProtocol=HTTP,InstancePort=80,

Technical Countermeasure Report

User Accounts 13

NS

iriusrisk

Elastic Load Balancing uses an Secure Socket Layer (SSL) negotiation
configuration, known as a security policy, to negotiate SSL/TLS connections between
a client and the load balancer. A security policy is a combination of SSL/TLS
protocols, ciphers, and the Server Order Preference option.

Elastic Load Balancing supports configuring your load balancer to use either
predefined or custom security policies.

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are cryptographic

protocols that are used to encrypt confidential data over insecure networks such as

the Internet. The TLS protocol is a newer version of the SSL protocol. In the Elastic
Load Balancing documentation, we refer to both SSL and TLS protocols as the SSL
protocol.

Configure the latest SSL Security

Policies for Web Tier ELB Note: an SSL certificate configured on the ELB and an SSL Security Policy is not

mandatory if you are terminating SSL connections directly on the Web Tier EC2
instances, and using a TCP listener on the ELB (TCP pass-through)

Making sure the latest ELB SSL Security Policy is used will ensure the SSL/TLS
connection will be negotiated using only the appropriate cryptographic protocols
deemed safe with no proven vulnerabilities.

Remediation:

Using the Amazon unified command line interface:

(Note that you should replace <web_tier_elb> with your Web-tier ELB name, and
_<latest_ssl_policy>_ with the proper policy name)

aws elb set-load-balancer-policies-of-listener --load-balancer-name <web_tier_elb> -
-load-balancer-port 443 --policy-names <latest_ssl|_policy>

When you use HTTPS for your front-end listener, you must deploy an SSL/TLS
certificate on your load balancer. The load balancer uses the certificate to terminate
the connection and then decrypt requests from clients before sending them to the
back-end instances.

The SSL\TLS protocol uses an X.509 certificate (SSL\TLS server certificate) to
authenticate both the client and the back-end application. An X.509 certificate is a
digital form of identification issued by a trusted certificate authority (CA) and contains
identification information, a validity period, a public key, a serial number, and the
digital signature of the issuer.

You can create a certificate using a Third Party Certificate Authority, AWS Certificate
Manager or a self signed certificate like OpenSSL.

Note: an SSL certificate configured on the ELB is not mandatory if you are
terminating SSL connections directly on the App Tier EC2 instances, and using a
TCP listener on the ELB (TCP pass-through)

Add SSL/TLS Certificate to App Tier
ELB

All the application traffic between the Web Tier instances and the App Tier ELB
nodes should be encrypted using an SSL\TLS certificate.
Remediation:

Using the Amazon unified command line interface:

» Adding a HTTPS listener configured with a SSL\TLS certificate (the listener
forwards traffic to the backend instances on port 80, but this can be modified by
editing InstancePort=80):

aws elb create-load-balancer-listeners --load-balancer-name <app_tier_elb> --
listeners
Protocol=HTTPS,LoadBalancerPort=443,InstanceProtocol=HTTP,InstancePort=80,

Technical Countermeasure Report

User Accounts 14

NS

iriusrisk

Elastic Load Balancing uses an Secure Socket Layer (SSL) negotiation
configuration, known as a security policy, to negotiate SSL/TLS connections between
a client and the load balancer. A security policy is a combination of SSL/TLS
protocols, ciphers, and the Server Order Preference option.

Elastic Load Balancing supports configuring your load balancer to use either
predefined or custom security policies.

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are cryptographic
protocols that are used to encrypt confidential data over insecure networks such as
the Internet. The TLS protocol is a newer version of the SSL protocol. In the Elastic
Load Balancing documentation, we refer to both SSL and TLS protocols as the SSL
protocol.

Configure the latest SSL Security
Policies for App Tier ELB Note: an SSL certificate configured on the ELB and an SSL Security Policy is not
mandatory if you are terminating SSL connections directly on the App Tier EC2
instances, and using a TCP listener on the ELB (TCP pass-through)

Making sure the latest ELB SSL Security Policy is used will ensure the SSL/TLS
connection will be negotiated using only the appropriate cryptographic protocols
deemed safe with no proven vulnerabilities.

Remediation:
Using the Amazon unified command line interface:

* (Note that you should replace <app_tier_elb> with your App-tier ELB name,
and <latest_ssl_policy> with the proper policy name)
aws elb set-load-balancer-policies-of-listener --load-balancer-name <app_tier_elb> --
load-balancer-port 443 --policy-names <latest_ssl_policy>

A load balancer takes requests from clients and distributes them across the EC2
instances that are registered with the load balancer (also known as back-end
instances).

A listener is a process that checks for connection requests. It is configured with a
protocol and a port for front-end (client to load balancer) connections.

Note: an HTTPS listener configured on the ELB is not mandatory if you are
terminating SSL connections directly on the App Tier EC2 instances, and using a
TCP listener on the ELB (TCP pass-through)

Use HTTPS listener for App Tier ELB
Using an HTTPS Elastic Load Balancer listener will make sure the application traffic
between the client and the App Tier ELB is encrypted over the SSL\TLS channel.

Remediation:
Using the Amazon unified command line interface:

« If the ListenerDescription field is missing, add a new HTTPS listener configured
with a SSL\TLS certificate (the listener forwards traffic to the backend instances on
port 80, but this can be modified by editing InstancePort=80):
aws elb create-load-balancer-listeners --load-balancer-name <app_tier_elb> --
listeners
Protocol=HTTPS,LoadBalancerPort=443,InstanceProtocol=HTTP,InstancePort=80,

Technical Countermeasure Report

User Accounts 15

NS

iriusrisk

When you use HTTPS for your front-end listener, you must deploy an SSL/TLS
certificate on your load balancer. The load balancer uses the certificate to terminate
the connection and then decrypt requests from clients before sending them to the
back-end instances.

The TLS protocol uses an X.509 certificate (SSL/TLS server certificate) to
authenticate both the client and the back-end application. An X.509 certificate is a
digital form of identification issued by a trusted certificate authority (CA) and contains
identification information, a validity period, a public key, a serial number, and the
digital signature of the issuer.

You can create a certificate using a Third Party Certificate Authority or AWS
Certificate Manager.

Add SSL/TLS Certificate to Web Tier

ELB Note: an SSL certificate configured on the ELB is not mandatory if you are

terminating SSL connections directly on the Web Tier EC2 instances, and using a
TCP listener on the ELB (TCP pass-through)

All the application traffic between the clients and the Web Tier ELB nodes should be
encrypted using a SSL/TLS certificate.

Remediation:
Using the Amazon unified command line interface:

» Adding a HTTPS listener configured with a SSL/TLS certificate (the listener
forwards traffic to the backend instances on port 80, but this can be modified by
editing InstancePort=80):
aws elb create-load-balancer-listeners --load-balancer-name <web _tier_elb> --
listeners
Protocol=HTTPS,LoadBalancerPort=443,InstanceProtocol=HTTP,InstancePort=80,

Elastic Load Balancing automatically distributes incoming application traffic across
multiple Amazon EC2 instances within a VPC.

It enables greater levels of fault tolerance in your applications, seamlessly providing
the required amount of load balancing capacity needed to distribute application traffic
across 1 or more Availability Zones within a VPC.

Elastic Load Balancing must be integrated with Auto Scaling Groups to ensure that
you have availability of compute resources in the event of a failure.

Integrating Auto Scaling Groups with an Elastic Load Balancer will help provide high
availability and back-end EC2 instance scaling.

Through Auto-Scaling Group configuration you can define:
minimum / maximum number of EC2 instances to be launched by the Auto-Scaling
Group

Associate each Auto-Scaling Group to Availability Zones / subnets used

ELB

Remediation:
Using the Amazon unified command line interface:

« List existing load balancers:
aws elb describe-load-balancers --query
'LoadBalancerDescriptions[*].{ELBName:LoadBalancerName}'

or

» Create new load balancer:
aws elb create-load-balancer --load-balancer-name <elb_name> --listeners
<listener_config> --subnets <application_subnet> --security-groups
<application_security _groups>

» Attached load balancer from previous steps to autoscaling group:
aws autoscaling attach-load-balancers --load-balancer-names <elb_name> --auto-
scaling-group-name <autoscaling_group_name>

Technical Countermeasure Report

User Accounts 16

NS

iriusrisk

Configure the Origin Protocol Policy for the Web tier ELB origin either to require that
CloudFront fetches objects from your origin by using HTTPS or to require that
CloudFront uses the protocol that the viewer used to request the objects. For
example, if you choose Match Viewer for the Origin Protocol Policy and the viewer
uses HTTPS to request an object from CloudFront, CloudFront also uses HTTPS to
forward the request to your origin.

In order to use HTTPS, an SSL\TLS certificate must be attached.

To ensure that objects are encrypted from edge locations to the Web-Tier ELB origin
according to the data classification policy, use Match Viewer.

Remediation:

Set a HTTPS connection from all Using the Amazon unified command line interface:

CloudFront Distributions to the Web Tier

ELB origin » For configuring "OriginProtocolPolicy"first save locally the current distribution

config:
aws cloudfront get-distribution-config --id application_cfn_distribution_id --query
"DistributionConfig" > /tmp/cf-distribution.json

Edit and replace "OriginProtocolPolicy"element in /tmp/cf-distribution.json with the
below section:
"OriginProtocolPolicy": "https-only",

» Retrieve the current ETag of your CloudFront distribution:
aws cloudfront get-distribution-config --id <application_cfn_distribution_id> --query
"ETag"

» Update the CloudFront distribution using the edited config and the above Etag:
aws cloudfront update-distribution --id <application_cfn_distribution_id> --distribution-
config file:///tmp/cf-distribution.json --if-match <application_cfn_distribution_etag>

Elastic Load Balancing automatically distributes incoming application traffic across
multiple Amazon EC2 instances within a VPC.

It enables greater levels of fault tolerance in your applications, seamlessly providing
the required amount of load balancing capacity needed to distribute application traffic
across 1 or more Availability Zones within a VPC.

Elastic Load Balancing must be integrated with Auto Scaling Groups to ensure that
you have availability of compute resources in the event of a failure.

Integrating Auto Scaling Groups with an Elastic Load Balancer will help provide high
availability and back-end EC2 instance scaling.

Through Auto-Scaling Group configuration you can define:

minimum / maximum number of EC2 instances to be launched by the Auto-Scaling
Group

Availability Zones / subnets used

Associate Web Tier Auto-Scaling Group
to ELB

Remediation:
Using the Amazon unified command line interface:

« List existing load balancers:
aws elb describe-load-balancers --query
'LoadBalancerDescriptions[*].{ELBName:LoadBalancerName}'
or

» Create new load balancer:
aws elb create-load-balancer --load-balancer-name <web_tier_elb> --listeners
<listener_config> --subnets <web_tier_elb_subnet1> <web_tier_elb_subnet2> --
security-groups <web_tier_elb_security_group>

« Attached load balancer from previous steps to autoscaling group:
aws autoscaling attach-load-balancers --load-balancer-names <web_tier_elb> --
auto-scaling-group-name <web_tier_autoscaling_group_name>

Technical Countermeasure Report

User Accounts 17

NS

iriusrisk

Elastic Load Balancing automatically distributes incoming application traffic across
multiple Amazon EC2 instances within a VPC.

It enables greater levels of fault tolerance in your applications, seamlessly providing
the required amount of load balancing capacity needed to distribute application traffic
across 1 or more Availability Zones within a VPC.

Elastic Load Balancing must be integrated with Auto Scaling Groups to ensure that
you have availability of compute resources in the event of a failure.

Integrating Auto Scaling Groups with an Elastic Load Balancer will help provide high
availability and back-end EC2 instance scaling.

Through Auto-Scaling Group configuration you can define:
minimum / maximum number of EC2 instances to be launched by the Auto-Scaling
Group

Associate App Tier Auto-Scaling Group Availability Zones / subnets used

to ELB

Remediation:
Using the Amazon unified command line interface:

« List existing load balancers:
aws elb describe-load-balancers --query
'LoadBalancerDescriptions[*].{ELBName:LoadBalancerName}'

or

» Create new load balancer:
aws elb create-load-balancer --load-balancer-name <app_tier_elb> --scheme internal
--listeners <listener_config> --subnets <app_tier_subnet1> <app_tier_subnet2> --
security-groups <app_tier_elb_security_group>

« Attached load balancer from previous steps to autoscaling group:
aws autoscaling attach-load-balancers --load-balancer-names <app_tier_elb> --auto-
scaling-group-name <app_tier_autoscaling_group_name>

Technical Countermeasure Report

User Accounts 18

NS

iriusrisk

By default, an Auto-Scaling Group periodically uses the results of the EC2 instance
status checks to determine the health status of each instance. If an instance fails the
EC2 instance status checks, Auto-Scaling marks the instance as unhealthy and
replaces the instance.

However, if you have attached one or more Elastic Load Balancing (ELB) load
balancers to your Auto-Scaling Group and the instance fails the ELB health checks,
Auto-Scaling does not replace the instance.

Amazon ELB will periodically sends pings, attempt connections, or sends requests to
test the EC2 instances, these tests are called health checks.

The status of the instances that are healthy at the time of the health check is
InService.

The status of any instances that are unhealthy at the time of the health check is
OutOfService.

The load balancer performs health checks on all registered instances, whether the
)) instance is in a healthy state or an unhealthy state. The load balancer routes
gfgﬁgure Health Check for Web Tier requests only to the healthy instances. When the load balancer determines that an
instance is unhealthy, it stops routing requests to that instance. The load balancer
resumes routing requests to the instance when it has been restored to a healthy

state

Ensure availability of back-end EC2 instances associated with an Amazon ELB
through application layer health check (ex: http) instead of TCP health checks.

Remediation:
Using the Amazon unified CLI:

» Create a JSON file containing the attributes you want to modify and save it
locally as /tmp/ELBhealthcheck.json:

"Target": "<string>",

"Interval": <integer>,

"Timeout": <integer>,
"UnhealthyThreshold": <integer>,
"HealthyThreshold": <integer>

}

» Modify Web tier ELB to include appropriate health check:
aws elb configure-health-check --load-balancer-name <web_tier_elb> --health-check
file:///tmp/ELBhealthcheck.json

Technical Countermeasure Report

User Accounts 19

NS

iriusrisk

By default, an Auto-Scaling Group periodically uses the results of the EC2 instance
status checks to determine the health status of each instance. If an instance fails the
EC2 instance status checks, Auto-Scaling marks the instance as unhealthy and
replaces the instance.

However, if you have attached one or more Elastic Load Balancing (ELB) load
balancers to your Auto-Scaling Group and the instance fails the ELB health checks,
Auto-Scaling does not replace the instance.

Amazon ELB will periodically sends pings, attempts connections, or sends requests
to test the EC2 instances, these tests are called health checks.

The status of the instances that are healthy at the time of the health check is
InService.

The status of any instances that are unhealthy at the time of the health check is
OutOfService.

The load balancer performs health checks on all registered instances, whether the
Configure Health Check for Ao Tier instance is in a healthy state or an unhealthy state. The load balancer routes

9 PP requests only to the healthy instances. When the load balancer determines that an
ELB . . : . .
instance is unhealthy, it stops routing requests to that instance. The load balancer
resumes routing requests to the instance when it has been restored to a healthy
state

Ensures availability of back-end EC2 instances associated with an Amazon ELB
through application layer health check (ex: http) instead of TCP health checks.

Remediation:
Using the Amazon unified CLI:

» Create a JSON file containing the attributes you want to modify and save it
locally as /tmp/ELBhealthcheck.json:

"Target": "<string>",

"Interval": <integer>,

"Timeout": <integer>,
"UnhealthyThreshold": <integer>,
"HealthyThreshold": <integer>

}

» Modify App tier ELB to include appropriate health check:
aws elb configure-health-check --load-balancer-name <app_tier_elb> --health-check
file:///tmp/ELBhealthcheck.json

Technical Countermeasure Report

User Accounts 20

NS

iriusrisk

Elastic Load Balancing automatically distributes incoming application traffic across
multiple Amazon EC2 instances in the a VPC. It enables you to achieve greater
levels of fault tolerance in your applications, seamlessly providing the required
amount of load balancing capacity needed to distribute application traffic.

AWS Elastic Load Balancers (ELBs) can record all incoming requests sent to the
load balancer and store within logs on S3. This allows for diagnosing application
failures and analyzing web traffic and security analysis of incoming traffic

Remediation:

Using the Amazon unified CLI:

Enable the ELB logging » Create a JSON file containing the attributes you want to modify and save it

locally as /tmp/ElbLogs.json:

{

"AccesslLog": {
"Enabled": true,
"S3BucketName": "string",
"Emitinterval": integer,
"S3BucketPrefix": "string"

}
}

» Update the Load Balancer attributes:
aws elb modify-load-balancer-attributes --load-balancer-name <elb_name> --load-
balancer-attributes file:///tmp/ElbLogs.json

Amazon Route 53 translates friendly domains names like www.example.com into IP
addresses like 192.0.2.1. Amazon Route 53 responds to DNS queries using a global
network of authoritative DNS servers, which reduces latency.

When someone enters your domain name in a browser, a DNS request is forwarded
to the nearest Amazon Route 53 DNS server in a global network of authoritative
DNS servers. Amazon Route 53 responds with the IP address that you specified.

Each domain has an associated hosted zone which contains the resource records
pointing to each layer of the application.

A private hosted zone is a container that holds information about how you want to
route traffic for a domain and its subdomains within the Amazon Virtual Private Cloud
(Amazon VPC). To begin, you create a private hosted zone and specify the Amazon
VPCs that you want to associate with the hosted zone. You then create resource

Set Root Domain Alias Record to ELB record sets that determine how Amazon Route 53 responds to queries for your
domain and subdomains within and among your Amazon VPCs.

Route53 provides special record type called Alias that allows creation of an A record
for the root domain and points it to the fully qualified domain of the Elastic Load
Balancer (ELB) associated with the web-server layer or Amazon CloudFront.

In the same way records for all other layers should be created in order to allow
flexibility in the application design and not hard-code the FQDN of a resource.

Remediation:
Using the Amazon unified command line interface:

* Create a hosted zone for YourDomain.com:
aws route53 create-hosted-zone --name <your_domain.com> --caller-reference
<any_string>

Technical Countermeasure Report

User Accounts 21

NS

iriusrisk

A route table contains a set of rules, called routes, that are used to determine where
network traffic is directed.

Each subnet in your VPC must be associated with a route table; the table controls
the routing for the subnet. A subnet can only be associated with one route table at a
time, but you can associate multiple subnets with the same route table.

The default route (0.0.0.0/0) should be pointing to the Internet Gateway in order to
Allow connectivity to the VPC Internet provide internet connectivity for the Web tier ELB.

Gateway (IGW) and associate the
Routing Table with Web tier ELB subnet
(by default route (0.0.0.0/0)) Remediation:

Using the Amazon unified command line interface:

» For the above route tables, if the default route (0.0.0.0/0) exists but it doesn't
have an IGW configured as gateway:
aws ec2 replace-route --route-table-id <route_table_id> --destination-cidr-block
0.0.0.0/0 --gateway-id <vpc_igw>

» For the above route tables, if the default route (0.0.0.0/0) doesn't exist:
aws ec?2 create-route --route-table-id <route_table_id> --destination-cidr-block
0.0.0.0/0 --gateway-id <vpc_igw>

Technical Countermeasure Report

User Accounts 22

iriusrisk

NS

Use a Web-Tier ELB Security Group to
accept only HTTP/HTTPS

A security group acts as a virtual firewall for your instance to control inbound and
outbound traffic. When you launch an instance in the AWS Virtual Private Cloud
(VPC), you can assign the instance up to five security groups. Security groups act at
the instance level, not the subnet level. Therefore, each instance in a subnet in your
VPC could be assigned to a different set of security groups. If you don't specify a
particular group at launch time, the instance is automatically assigned to the default
security group for the VPC.

For each security group, you add rules that control the inbound traffic to instances,
and a separate set of rules that control the outbound traffic.

The SG associated with the Web tier ELB should allow connectivity from any source
IP (0.0.0.0/0) only for the HTTP (TCP 80) and HTTPS (TCP 443) ports.

Remediation:
Using the Amazon unified command line interface:

« First remove all the ingress rules for the security group associated with the Web
tier ELB:
aws ec2 describe-security-groups --group-id <security_group_id> --query
"SecurityGroups|[0].IpPermissions" > /tmp/IpPermissions.json

aws ec2 revoke-security-group-ingress --group-id <security_group_id> --ip-
permissions file:///tmp/IpPermissions.json

« create locally the below json file containing ingress rules for any source IP
(0.0.0.0/0) only for the HTTP (TCP 80) and HTTPS (TCP 443) ports and name it
IpPermissions.json:

[

{

"PrefixListlds": [],

"FromPort": 80,
"IpRanges™: [
{

"Cidrlp": "0.0.0.0/0"
}

I8

"ToPort": 80,
"IpProtocol": "tcp"”,
"UserldGroupPairs": []

"PrefixListlds": [],
"FromPort": 443,
"IpRanges™: [

"Cidrlp": "0.0.0.0/0"
}
l
"ToPort": 443,

"IpProtocol": "tcp"”,
"UserldGroupPairs": []

» Add to the security group associated with the Web tier ELB the above ingress
rules:
aws ec2 authorize-security-group-ingress --group-id <security_group_id> --ip-
permissions file:///PathTo/IpPermissions.json

Technical Countermeasure Report
User Accounts

23

NS

iriusrisk

When you use the AWS Management Console to create a load balancer in a VPC,
you can choose an existing security group for the VPC or create a new security
group for the VPC. If you choose an existing security group, it must allow traffic in
both directions to the listener and health check ports for the load balancer. If you
choose to create a security group, the console automatically adds rules to allow all
traffic on these ports.

Be sure to review the security group rules to ensure that they allow traffic on the
listener and health check ports for the new load balancer. When you delete your load
balancer, this security group is not deleted automatically.

If you add a listener to an existing load balancer, you must review your security
groups to ensure they allow traffic on the new listener port in both directions.

The web-tier ELB is the only one that is public facing and should have rules to allow
inbound traffic to the application ports (ex: HTTP and HTTPS) from any IP source

Do not use Web tier ELB Security Group (0.0.0.0/0)

in the Auto Scaling launch configuration
of any other tier (Web, App)

The outbound security group rules for the web-tier ELB should be restricted to only
the backend web-server instances for the appropriate application ports.

Associating the web-tier ELB security group to any other instances that shouldn't be
publicly accessible exposes them to unauthorized access.

Remediation:
Using the Amazon unified command line interface:

» Create new launch configuration using the correct security groups for Web
and/or App tier:
aws autoscaling create-launch-configuration --launch-configuration-name
<web_tier_launch_config> --image-id <web_tier_ami> --key-name <your_key_pair> -
-security-groups <web_tier_security_group>/<app_tier_security_group --instance-
type <desired_instance_type> --iam-instance-profile
<web_tier_instance_profile>/<app_tier_instance_profile>

Technical Countermeasure Report

User Accounts 24

iriusrisk

NS

Create the App tier ELB Security Group
to only accept HTTP/HTTPS

A security group acts as a virtual firewall for your instance to control inbound and
outbound traffic. When you launch an instance in the AWS Virtual Private Cloud
(VPC), you can assign the instance to up to five security groups. Security groups act
at the instance level, not the subnet level. Therefore, each instance in a subnet in
your VPC could be assigned to a different set of security groups. If you don't specify
a particular group at launch time, the instance is automatically assigned to the
default security group for the VPC.

For each security group, you add rules that control the inbound traffic to instances,
and a separate set of rules that control the outbound traffic.

The SG associated with the App tier ELB should allow connectivity from the security
group associated with Web tier instances only for the HTTP (TCP 80) and HTTPS
(TCP 443) ports.

The defaults for HTTP and HTTPS are used as an example, any other ports would
apply depending on the application design.

Remediation:
Using the Amazon unified command line interface:

« First remove all the ingress rules for the security group associated with the App
tier ELB:
aws ec2 describe-security-groups --group-id app_tier_elb_security_group --query
"SecurityGroups[0].IpPermissions" > /tmp/IpPermissions.json

aws ec2 revoke-security-group-ingress --group-id app_tier_elb_security_group --ip-
permissions file:///tmp/IpPermissions.json

« create locally the below json file containing ingress rules for HTTP (TCP 80) and
HTTPS (TCP 443) ports only from and name it IpPermissions.json:
[
{
"PrefixListlds": [],
"FromPort": 80,
"IpRanges": [],
"ToPort"; 80,
"IpProtocol": "tcp"”,
"UserldGroupPairs™: [

"Userld": "<aws_account_number>",
"Groupld": "<<span style="font-
style: italic;">web_tier_security_group"

]

h

{
"PrefixListlds": [,
"FromPort": 443,
"IpRanges": [l,
"ToPort": 443,
"IpProtocol": "tcp",
"UserldGroupPairs": [

"Userld": "<aws_account_number>",
"Groupld": "<<span style="font-
style: italic;">web_tier_security_group>"
}
1
}
]

» Add to the security group associated with the App tier ELB the above ingress
rules:
aws ec2 authorize-security-group-ingress --group-id app_tier_elb_security_group --
ip-permissions file:///PathTo/lpPermissions.json

Technical Countermeasure Report
User Accounts

25

NS

iriusrisk

A security group acts as a virtual firewall for your instance to control inbound and
outbound traffic. When you launch an instance in the AWS Virtual Private Cloud
(VPC), you can assign the instance to up to five security groups. Security groups act
at the instance level, not the subnet level. Therefore, each instance in a subnet in
your VPC could be assigned to a different set of security groups. If you don't specify
a particular group at launch time, the instance is automatically assigned to the
default security group for the VPC.

For each security group, you add rules that control the inbound traffic to instances,
and a separate set of rules that control the outbound traffic.

This is required for both the configured port and protocol for the listener on the back-
end instance and the port and protocol used for the health check.

This protects the App-server tier from unauthorized access, it is recommended to
Create the App tier Security Group to add inbound security group rules that allow traffic for the specific application protocol
allow inbound connections from App tier | and ports by referencing as source the security group associated with the App tier
ELB Security Group for explicit ports ELB.

Remediation:
Using the Amazon unified command line interface:

« First remove all the ingress rules for the App tier security group (use the
"AppTierSecurityGroup" element from Audit procedure):
aws ec2 describe-security-groups --group-id app_tier_security_group --query
"SecurityGroups[0].IpPermissions" > /tmp/IpPermissions.json

aws ec2 revoke-security-group-ingress --group-id app_tier_security_group --ip-
permissions file:///tmp/IpPermissions.json

» Add an ingress rule for a specific port, using --source-group option to specify the
App tier ELB security group as the source of the connections:
aws ec2 authorize-security-group-ingress --group-id app_tier_security_group --
protocol tcp --port specific_port --source-group app_tier_elb_security_group

Technical Countermeasure Report

User Accounts 26

NS

iriusrisk

An internal load balancer routes traffic to your EC2 instances in private subnets
using private IP addresses.

Create an internal load balancer and register the database servers with it. The web
servers receive requests from the Internet-facing load balancer and send requests
for the database servers to the internal load balancer. The database servers receive
requests from the internal load balancer.

When an internal load balancer is created, it receives a public DNS name with the
following form:

internal-name-123456789.region.elb.amazonaws.com

The DNS servers resolve the DNS name of your load balancer to the private IP
addresses of the load balancer nodes for your internal load balancer. Each load
balancer node is connected to the private IP addresses of the back-end instances
that are in its Availability Zone using elastic network interfaces.

Create the App tier ELB as Internal

Creating the App tier ELB as internal will prevent access to the app tier from the
Internet and will allow access from the Web tier instances.

Remediation:
Using the Amazon unified command line interface:

» Create new internal ELB for your App tier:
aws elb create-load-balancer --load-balancer-name app_tier_elb --scheme internal --
listeners listener_config --subnets app_tier_subnet1 app_tier_subnet2 --security-
groups app_tier_elb_security_group

» Register App tier instances with the new App tier ELB:
aws elb register-instances-with-load-balancer --load-balancer-name app_tier_elb --
instances <app_tier_instance1> <app_tier_instance2> <app_tier_instance3>

You can create a VPC that spans multiple Availability Zones. After creating a VPC,
you can add one or more subnets in each Availability Zone. Each subnet must reside
entirely within one Availability Zone and cannot span zones. Availability Zones are
distinct locations that are engineered to be isolated from failures in other Availability
Zones. By launching instances in separate Availability Zones, you can protect your
applications from the failure of a single location. AWS assigns a unique ID to each
subnet.

When you create a subnet, you specify the CIDR block for the subnet. The CIDR
block of a subnet shouldn't be the same as the CIDR block for the VPC (for a single
subnet in the VPC). The allowed block size is between a /28 netmask and /16
netmask. If you create more than one subnet in a VPC, the CIDR blocks of the
subnets must not overlap.

Some AWS regions have more than 2 availability zones and it is recommended to

Create subnets for the Web Tier ELB .
use more than 2 where possible.

At least 2 subnets in 2 different availability zones (AZ) should be created in order to
have fault tolerance and high availability from the perspective of resource
deployment.

Remediation:
Using the Amazon unified command line interface:

» Create subnets for Web tier ELB, and note the subnet id:
aws ec2 create-subnet --vpc-id application_vpc --cidr-block desired_cidr

» Tag the above subnets with the Web tier ELB tags:
aws ec?2 create-tags --resources web_tier_elb_subnet1 web_tier_elb_subnet2 --tags
Key=public_tier_tag,Value=public_tier_tag_value

Technical Countermeasure Report

User Accounts 27

Component: MySQL

Use prepared statements for all
database queries

Database injection attacks, such as SQLi (SQL Injection) rely on sending tainted
client-side data which is used in dynamic SQL queries at the server-side in an unsafe
manner. For example, creating queries by concatenating strings using untrusted data
may result in vulnerable code , for example an attacker may append an 'OR’
statement through the provided customerName parameter passed to the following
code to bypass the checks and return additional data from the database:

 String query = "SELECT user FROM users WHERE name ="
+ request.getParameter("customerName")+"";
Using prepared statements with carefully controlled and validated input conditions
mitigates against SQLi and related attacks.

« Database queries should always be made using prepared statements or
parameterized queries.

» Queries through an Object-Relational mapper should also be treated as tainted
input, and made using prepared statements to mitigate the threat.

Apply required security patches to the
service

Vendors and other maintainers of software release patches in response to security
flaws and other bugs in their products. The longer a system is exposed with a known
security vulnerability, the easier to compromise it is as the exploit became public,
they get included into automated exploitation suites like Metasploit and a wider
audience is able to exploit them.

» Apply patches and other software updates in a timely manner to prevent
unexpected failures or exploitation.

« Clearly define an approach for testing and applying patches, in particular
security patches, with expected timescales. There is often a small window between
release of a patch, and potentially malicious actors reverse-engineering the patch to
identify and exploit the flaw.

» Use a threat intelligence, vulnerability scanning, or other alerting service to
ensure the project team is aware of issues within the project or its components
promptly.

Access the data store from an account
with the least privileges necessary

Use an account with only the minimum set of permissions required to access the
data store. The account should not be able to perform operations that are not
explicitly required by the component that performs these operations.

For example, if a web application needs to read data from certain tables and insert
and update data from others, then a database account with only those specific
permissions should be used by the application server.

Restrict access to the service at the
network layer to reduce exposure

Access to services should be restricted to expected sources, limiting exposure of the
service and its attack surface; and the likelihood of a malicious actor gaining access
to the system.

» Apply network layer security controls so that only the necessary and expected IP
addresses are permitted access to connect to the service.

Technical Countermeasure Report
User Accounts

28

Appendix A: Countermeasure Details

NS

iriusrisk

This appendix shows all of the countermeasures mitigating the threats found in the project.

Component: API GW

CWE-799

Implement application
and network rate
limiting

A number of attacks rely on brute-force
techniques to send large volumes of requests to
enumerate or attempt to exploit flaws in an
application, for example, sending common
passwords to multiple target accounts within an
application. By profiling normal traffic volumes,
and applying rate limiting, the application can be
built to actively mitigate such attacks.

» Connection rate-limiting based on the
source IP address can be used to restrict attacks
against the authentication or registration
systems. Multiple failures (or attempts) from a
single IP should result in temporarily blocking or
dropping traffic from the source. Note however
that some corporate and ISP environment may
place multiple valid and discrete clients behind
the same IP address, resulting in false-positives.

» Attackers may use botnets and other IP
masking techniques to deliver attacks from
multiple sources to avoid IP based rate-limiting.
To mitigate this class of attack, Indicators of
Compromise should be monitored (for example a
higher rate of login failures than usual), and
appropriate actions taken. For example, when
the application detects active brute-force attacks,
a Web Application Firewall (WAF) or other
intermediate devices could be used to block
attacks sharing a signature from pattern
matching or deep packet inspection (e.g. HTTP
headers or common passwords across multiple
accounts). Similarly, the application could
respond by requiring a CAPTCHA, cookie, or
Javascript challenge when an attack is detected.

Remediation:
Implement the mechanisms to lockout accounts:

* When the application detects a set number
of failure login attempts, the account shall be
locked for a certain time period.

» When the application detects that an
account is locked more times than usual, this
account shall be disabled. A disabled account
shall only be restored by an administrator.

* When the application detects active brute-
force attacks, the application shall require a
CAPTCHA, cookie, or JavaScript challenge.

Rejected

Not Tested

OTG-
BUSLOGIC

Detect and notify the
usage of automated
tools or unusual
behavior

Don't allow users to manipulate a system or
guess its behavior based on input or output
timing and detect the usage of automated tools
or unusual behavior, such as actions not
performed in reasonable "human time" or other
abnormal time patterns.

When the usage of automated tools is detected,
the application shall respond with denying the
access and notifying the security group.

Rejected

Not Tested

Technical Countermeasure Report

User Accounts

29

iriusrisk

CWE-541

Prevent unauthorised
access to source code
through the service

Access to the source-code for the application
can aid an attacker in determined bugs or
vulnerabilities in the code or logic. For closed-
source projects it is therefore important to control
and restrict access to the source. Application
services may unexpectedly expose code, for
example a service providing files to a user could
be manipulated to access source code if
implemented insecurely.

» Ensure that source code is not inadvertently
disclosed through misconfiguration or
vulnerabilities in the service.

» Check that configuration files are not
downloadable directly from the service, and
cannot be read and viewed through the service
itself.

» Ensure backups, operating system, and
version control artifacts do not expose code.

Recommended

Not Tested

CDS-USER-
TRACK

Log details of user
actions within the
system

To maintain proper accountability, logs should be
maintained with sufficient information to track
user actions within the system. These logs
should be forensically sound, non-repudiable,
and contain comprehensive details about
activity. While the exact data for an event may
vary, the following should be captured at a
minimum:

» Timestamps against a proven external
source (e.g. an NTP server)

« Origin, with this field we mark if the logs are
provided by a trusted or untrusted source.

» Event, status, and/or error codes (with
sensitive data masked as appropriate or not
introduced in logs)

» Service, command, application or function
name and details

» User or system account associated with an
event

» Devices used (e.g. source and destination
IPs, terminal session 1D, web browser, etc)
Source: https://security.berkeley.edu/security-
audit-logging-guideline

Required

Not Tested

CSD-VAL-
LOG

Log and reject all data
validation failures

Data validation failures, together with access
control violations, are symptomatic of malicious
activity where an attacker is attempting to
subvert the protections in place. It is therefore
likely that unexpected input detected by the
application relates to an attack. Rejecting and
logging such activity, and ideally terminating the
session, increases the likelihood of detecting and
inhibiting structured attacks against the
application.

* Log all validation failures when rejecting
requests.

» Ensure logged data is appropriately
sanitized and encoded to prevent attacks against
the logs and subsequent access to them.

» Terminate the offending user session to
inhibit further attack.

» Ensure errors returned to the client-side are
generic to prevent an attacker enumerating the
defenses in place or gaining knowledge about
the back-end.

Required

Not Tested

Technical Countermeasure Report

User Accounts

30

https://security.berkeley.edu/security-audit-logging-guideline
https://security.berkeley.edu/security-audit-logging-guideline

iriusrisk

CWE-319-
TRANSPORT

Encrypt data between
the client and
server/service

Data passed between the client and server
should be protected by encryption in transit.

» Implement cryptographically strong TLS
end-to-end encryption between the client and
server, terminating within a secure environment
on the server-side.

» Consider use of client certificates to prevent
interception of (or man-in-the-middle attacks on)
the encrypted connection.

« Alternatively, asymmetric (public-key)
encryption could be utilized, although a
recognized, proven, and tested
implementation/library should be used

Required

Not Tested

CWE-662

Use a synchronised
time source

In order to correlate logs and data from different
internal and external systems, and to preserve
forensic quality of the logs, it is important a
unified and trusted synchronized time source is
used throughout the environment.

» Servers should be synchronize to an internal
or external NTP server

* The centralized source should in turn use
(or be) a trusted central time source.
This control is critical in identifying application
events (including attacks) through logging, and in
conduction post-event analysis, in particular to
track the whole user (or attacker) journey
through the system should it be compromised.

It is good practice to use the concept of
Indicators of Compromise (IoC) should be used
to detect possible situations in which the system
has been compromised and to give an
appropriate response. 10Cs are often tracked
through logs, and accurate time is often
essential.

Required

Not Tested

Technical Countermeasure Report

User Accounts

31

iriusrisk

DATA-VAL

Validate all data
received from the client
side

All data received from the client-side should be
considered tainted and a potential risk,
regardless of the source or transport method.
For example, while hidden form fields, cookies,
or other headers may be obfuscated from a user,
along with parameters passed in ViewStates or
other encapsulated forms, these can be modified
by the user at the client-side in memory, or in
transit on the network. Similarly, data passed
from binary or compiled components can be
modified in situ or in transit.

Furthermore, encryption only secures the data in
transit between the two ends of the encrypted
tunnel (one end of which is typically controlled by
the client); data passing through the link may still
be malicious.

As such, all data from the client side must be
subjected to strict validation, sanitization, and
encoding against expected syntactic and
semantic criteria.

» Define a specification of the data that is
expected at each input; both the syntax (e.g.
alphanumeric only) and semantics (e.g. a word
of between 1 and 25 characters, or a specific
list). As an example of business rule logic, "boat"
may be syntactically valid because it only
contains alphanumeric characters, but it is not
valid if the input is only expected to contain
colors such as "red" or "blue."

* Implement a 'known good' or white-list
approach, where only inputs that meet the strict
criteria for each input are accepted, and reject,
transform, or encapsulate any non-compliant
data.

» While useful for identifying malicious
content, do not rely on looking for specific
malformed or attack payloads (blacklists). It is
almost impossible to maintain a comprehensive
and accurate blacklist due to the complexity and
evolving nature of attacks, opportunities to
obfuscate payloads, and changes to the code's
execution environment. As noted, blacklists can
be useful for detecting and logging potential
attacks, or determining which inputs are so
malformed that they should be rejected outright.

+ Validate all data received from the client,
including values such as HTTP headers and
cookie values if these are used as input on the
server side, X- headers, and other platform
specific data objects passed between the client
and server.

Required

Not Tested

LOG-TLS-
FAILURES

Log the backend TLS
connection failures

Implement functionality to record backend TLS
connection failures and include these in the logs.

Required

Not Tested

LOGS-
INTEGRITY

Ensure the integrity of
the logging system

Ensure Log integrity for the application
generated logs, such as storing logs on write-
once media, forwarding a copy of the logs to a
centralized SIEM or generating message digests
for each log file.

Required

Not Tested

RESTRICT-
NUMBER-
ACCOUNT-
TO-LOGS

Limit the number of
accounts with
privileges allowing
modification and/or
deletion of audit logs
files

Limit the number of account with privileges to
modify and/or delete audit logs files.

Required

Failed

SAME-
ENCODING-
STYLE

Ensure that the client-
side and the server-
side are using the
same encoding style

Ensure that the client-side and the server-side
are using the same encoding style.

Required

Not Tested

Technical Countermeasure Report

User Accounts

32

NS

iriusrisk

ASVS-8.8

Escape meta-
characters from un-
trusted data

If untrusted data, including any data received
from the client side of a connection is directly
written to a log file, then this data could contain
newline or other meta-characters that would
allow an attacker to forge log entries.

Such meta-characters should first be escaped or
removed before the data is written to the logging
system.

Implemented

Passed

CWE-532

Do not write secrets to
the log files

The logs may be accessed by attackers and in
order to protect sensitive data, no such sensitive
data should be included in the logs

Implemented

Not Tested

LOG-
RETENTION

Develop a log retention
policy

Develop a log retention policy to identify storage
requirements for device logs and implement
procedures to ensure that the audit logs are
available for a security response in the case of
incident or investigation.

The audit logs must be collected for the last 30
days in easily accessible storage media. Older
logs should be archived in a protected storage
and should be accessible in the future as
required for incidents or investigations.

Implemented

Not Tested

OTG-
BUSLOGIC-
006

Restrict actions of
users that follow
unusual patterns.

Restrict actions that users can do outside of the
approved/required business process flow.

This is important because without this safeguard
in place attackers may be able to bypass or
circumvent work-flows and checks allowing them
to prematurely enter or skip required sections of
the application potentially allowing
action/transaction to be completed without
successfully completing the entire business
process, leaving the system with incomplete
back-end tracking information.

Implemented

Not Tested

Technical Countermeasure Report

User Accounts

33

Component: ELB - Elastic Load Balancer

Id

Hydras-AWS-
ELB-01

Name

Use the Perfect
Forward Secrecy
feature

Description

For greater communication privacy Elastic Load
Balancing allows the use of Perfect Forward
Secrecy. This feature provides additional
safeguards against eavesdropping on encrypted
data, through the use of a unique random
session key, and therefore prevents the
decoding of captured data, even if the secret
long-term key is compromised.

To begin using Perfect Forward Secrecy:
Configure your load balancer with the newly
added Elliptic Curve Cryptography (ECDHE)
cipher suites.

State

Recommended

NS

iriusrisk
Result

Not Tested

Hydras-AWS-
ELB-02

Select the Server Order
Preference option

Within Elastic Load Balancing ensure the use of
newer and stronger cipher suites when
establishing a new connection supporting the
Server Order Preference option. When this
option is selected, the load balancer selects the
first cipher in its list that is in the client's list of
ciphers.

Remediation:

To enable Server Order Preference:

* Open the Amazon EC2 console.

» Under LOAD BALANCING, choose Load
Balancers.

» Select your Load Balancer.

» On the Listeners tab, for Cipher, choose
Change.

» On the Select a Cipher page, select Custom
Security Policy.

» For SSL Options, select Server Order
Preference.

* Click Save.

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

34

iriusrisk

aws-tier-1.1

Use HTTPS listener for
Web Tier ELB

A load balancer takes requests from clients and
distributes them across the EC2 instances that
are registered with the load balancer (also
known as back-end instances).

A listener is a process that checks for connection
requests. It is configured with a protocol and a
port for front-end (client to load balancer)
connections

Note: an HTTPS listener configured on the ELB
is not mandatory if you are terminating SSL
connections directly on the Web Tier EC2
instances, and using a TCP listener on the ELB
(TCP pass-through)

Using an HTTPS Elastic Load Balancer listener
will make sure the application traffic between the
client and the Web Tier ELB is encrypted over
the SSL\TLS channel.

Remediation:
Using the Amazon unified command line
interface:

« If the ListenerDescription field is missing,
add a new HTTPS listener configured with a
SSL\TLS certificate (the listener forwards traffic
to the backend instances on port 80, but this can
be modified by editing InstancePort=80):
aws elb create-load-balancer-listeners --load-
balancer-name <web_tier_elb> --listeners
Protocol=HTTPS,LoadBalancerPort=443,Instanc
eProtocol=HTTP,InstancePort=80,
SSLCertificateld=ssl_certificate_arn

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

35

iriusrisk

Configure the latest
aws-tier-1.10 | SSL Security Policies
for Web Tier ELB

Elastic Load Balancing uses an Secure Socket
Layer (SSL) negotiation configuration, known as
a security policy, to negotiate SSL/TLS
connections between a client and the load
balancer. A security policy is a combination of
SSL/TLS protocols, ciphers, and the Server
Order Preference option.

Elastic Load Balancing supports configuring your
load balancer to use either predefined or custom
security policies.

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) are cryptographic protocols
that are used to encrypt confidential data over
insecure networks such as the Internet. The TLS
protocol is a newer version of the SSL protocol.
In the Elastic Load Balancing documentation, we
refer to both SSL and TLS protocols as the SSL
protocol.

Note: an SSL certificate configured on the ELB
and an SSL Security Policy is not mandatory if
you are terminating SSL connections directly on
the Web Tier EC2 instances, and using a TCP
listener on the ELB (TCP pass-through)

Making sure the latest ELB SSL Security Policy
is used will ensure the SSL/TLS connection will
be negotiated using only the appropriate
cryptographic protocols deemed safe with no
proven vulnerabilities.

Remediation:

Using the Amazon unified command line
interface:

(Note that you should replace <web_tier_elb>
with your Web-tier ELB name, and
_<latest_ssl_policy>_ with the proper policy
name)

aws elb set-load-balancer-policies-of-listener --
load-balancer-name <web_tier_elb> --load-
balancer-port 443 --policy-names
<latest_ssl_policy>

Recommended

Not Tested

Technical Countermeasure Report
User Accounts

36

iriusrisk

aws-tier-1.12

Add SSL/TLS
Certificate to App Tier
ELB

When you use HTTPS for your front-end listener,
you must deploy an SSL/TLS certificate on your
load balancer. The load balancer uses the
certificate to terminate the connection and then
decrypt requests from clients before sending
them to the back-end instances.

The SSL\TLS protocol uses an X.509 certificate
(SSL\TLS server certificate) to authenticate both
the client and the back-end application. An X.509
certificate is a digital form of identification issued
by a trusted certificate authority (CA) and
contains identification information, a validity
period, a public key, a serial number, and the
digital signature of the issuer.

You can create a certificate using a Third Party
Certificate Authority, AWS Certificate Manager or
a self signed certificate like OpenSSL.

Note: an SSL certificate configured on the ELB is
not mandatory if you are terminating SSL
connections directly on the App Tier EC2
instances, and using a TCP listener on the ELB
(TCP pass-through)

All the application traffic between the Web Tier
instances and the App Tier ELB nodes should be
encrypted using an SSL\TLS certificate.
Remediation:

Using the Amazon unified command line
interface:

» Adding a HTTPS listener configured with a
SSL\TLS certificate (the listener forwards traffic
to the backend instances on port 80, but this can
be modified by editing InstancePort=80):

aws elb create-load-balancer-listeners --load-
balancer-name <app_tier_elb> --listeners
Protocol=HTTPS,LoadBalancerPort=443,Instanc
eProtocol=HTTP,InstancePort=80,
SSLCertificateld=ssl_certificate_arn

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

37

iriusrisk

aws-tier-1.13

Configure the latest
SSL Security Policies
for App Tier ELB

Elastic Load Balancing uses an Secure Socket
Layer (SSL) negotiation configuration, known as
a security policy, to negotiate SSL/TLS
connections between a client and the load
balancer. A security policy is a combination of
SSL/TLS protocols, ciphers, and the Server
Order Preference option.

Elastic Load Balancing supports configuring your
load balancer to use either predefined or custom
security policies.

Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) are cryptographic protocols
that are used to encrypt confidential data over
insecure networks such as the Internet. The TLS
protocol is a newer version of the SSL protocol.
In the Elastic Load Balancing documentation, we
refer to both SSL and TLS protocols as the SSL
protocol.

Note: an SSL certificate configured on the ELB
and an SSL Security Policy is not mandatory if
you are terminating SSL connections directly on
the App Tier EC2 instances, and using a TCP
listener on the ELB (TCP pass-through)

Making sure the latest ELB SSL Security Policy
is used will ensure the SSL/TLS connection will
be negotiated using only the appropriate
cryptographic protocols deemed safe with no
proven vulnerabilities.

Remediation:
Using the Amazon unified command line
interface:

* (Note that you should replace
<app_tier_elb> with your App-tier ELB name,
and <latest_ssl_policy> with the proper policy
name)
aws elb set-load-balancer-policies-of-listener --
load-balancer-name <app_tier_elb> --load-
balancer-port 443 --policy-names
<latest_ssl_policy>

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

38

iriusrisk

aws-tier-1.14

Use HTTPS listener for
App Tier ELB

A load balancer takes requests from clients and
distributes them across the EC2 instances that
are registered with the load balancer (also
known as back-end instances).

A listener is a process that checks for connection
requests. It is configured with a protocol and a
port for front-end (client to load balancer)
connections.

Note: an HTTPS listener configured on the ELB
is not mandatory if you are terminating SSL
connections directly on the App Tier EC2
instances, and using a TCP listener on the ELB
(TCP pass-through)

Using an HTTPS Elastic Load Balancer listener
will make sure the application traffic between the
client and the App Tier ELB is encrypted over the
SSL\TLS channel.

Remediation:
Using the Amazon unified command line
interface:

« If the ListenerDescription field is missing,
add a new HTTPS listener configured with a
SSL\TLS certificate (the listener forwards traffic
to the backend instances on port 80, but this can
be modified by editing InstancePort=80):
aws elb create-load-balancer-listeners --load-
balancer-name <app_tier_elb> --listeners
Protocol=HTTPS,LoadBalancerPort=443,Instanc
eProtocol=HTTP,InstancePort=80,
SSLCertificateld=ssl_certificate_arn

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

39

iriusrisk

aws-tier-1.9

Add SSL/TLS
Certificate to Web Tier
ELB

When you use HTTPS for your front-end listener,
you must deploy an SSL/TLS certificate on your
load balancer. The load balancer uses the
certificate to terminate the connection and then
decrypt requests from clients before sending
them to the back-end instances.

The TLS protocol uses an X.509 certificate
(SSL/TLS server certificate) to authenticate both
the client and the back-end application. An X.509
certificate is a digital form of identification issued
by a trusted certificate authority (CA) and
contains identification information, a validity
period, a public key, a serial number, and the
digital signature of the issuer.

You can create a certificate using a Third Party
Certificate Authority or AWS Certificate Manager.

Note: an SSL certificate configured on the ELB is
not mandatory if you are terminating SSL
connections directly on the Web Tier EC2
instances, and using a TCP listener on the ELB
(TCP pass-through)

All the application traffic between the clients and
the Web Tier ELB nodes should be encrypted
using a SSL/TLS certificate.

Remediation:
Using the Amazon unified command line
interface:

» Adding a HTTPS listener configured with a
SSL/TLS certificate (the listener forwards traffic
to the backend instances on port 80, but this can
be modified by editing InstancePort=80):
aws elb create-load-balancer-listeners --load-
balancer-name <web_tier_elb> --listeners
Protocol=HTTPS,LoadBalancerPort=443,Instanc
eProtocol=HTTP,InstancePort=80,

SSL Certificateld=ssl|_certificate_arn

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

40

iriusrisk

Associate each Auto-

aws-tier-3.1 Scaling Group to ELB

Elastic Load Balancing automatically distributes
incoming application traffic across multiple
Amazon EC2 instances within a VPC.

It enables greater levels of fault tolerance in your
applications, seamlessly providing the required
amount of load balancing capacity needed to
distribute application traffic across 1 or more
Availability Zones within a VPC.

Elastic Load Balancing must be integrated with
Auto Scaling Groups to ensure that you have
availability of compute resources in the event of
a failure.

Integrating Auto Scaling Groups with an Elastic
Load Balancer will help provide high availability
and back-end EC2 instance scaling.

Through Auto-Scaling Group configuration you
can define:

minimum / maximum number of EC2 instances
to be launched by the Auto-Scaling Group
Availability Zones / subnets used

Remediation:
Using the Amazon unified command line
interface:

« List existing load balancers:
aws elb describe-load-balancers --query
'‘LoadBalancerDescriptions[*].{ELBName:LoadBa
lancerName}'

or

» Create new load balancer:
aws elb create-load-balancer --load-balancer-
name <elb_name> --listeners <listener_config> -
-subnets <application_subnet> --security-groups
<application_security_groups>

 Attached load balancer from previous steps
to autoscaling group:
aws autoscaling attach-load-balancers --load-
balancer-names <elb_name> --auto-scaling-
group-name <autoscaling_group_name>

Recommended

Not Tested

Technical Countermeasure Report
User Accounts

41

iriusrisk

aws-tier-3.12

Seta HTTPS
connection from all
CloudFront
Distributions to the
Web Tier ELB origin

Configure the Origin Protocol Policy for the Web
tier ELB origin either to require that CloudFront
fetches objects from your origin by using HTTPS
or to require that CloudFront uses the protocol
that the viewer used to request the objects. For
example, if you choose Match Viewer for the
Origin Protocol Policy and the viewer uses
HTTPS to request an object from CloudFront,
CloudFront also uses HTTPS to forward the
request to your origin.

In order to use HTTPS, an SSL\TLS certificate
must be attached.

To ensure that objects are encrypted from edge
locations to the Web-Tier ELB origin according to
the data classification policy, use Match Viewer.

Remediation:
Using the Amazon unified command line
interface:

« For configuring "OriginProtocolPolicy"first
save locally the current distribution config:
aws cloudfront get-distribution-config --id
application_cfn_distribution_id --query
"DistributionConfig" > /tmp/cf-distribution.json

Edit and replace "OriginProtocolPolicy"element
in /tmp/cf-distribution.json with the below section:
"OriginProtocolPolicy": "https-only",

*» Retrieve the current ETag of your
CloudFront distribution:
aws cloudfront get-distribution-config --id
<application_cfn_distribution_id> --query "ETag"

» Update the CloudFront distribution using the
edited config and the above Etag:
aws cloudfront update-distribution --id
<application_cfn_distribution_id> --distribution-
config file:///tmp/cf-distribution.json --if-match
<application_cfn_distribution_etag>

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

42

iriusrisk

aws-tier-3.13

Associate Web Tier
Auto-Scaling Group to
ELB

Elastic Load Balancing automatically distributes
incoming application traffic across multiple
Amazon EC2 instances within a VPC.

It enables greater levels of fault tolerance in your
applications, seamlessly providing the required
amount of load balancing capacity needed to
distribute application traffic across 1 or more
Availability Zones within a VPC.

Elastic Load Balancing must be integrated with
Auto Scaling Groups to ensure that you have
availability of compute resources in the event of
a failure.

Integrating Auto Scaling Groups with an Elastic
Load Balancer will help provide high availability
and back-end EC2 instance scaling.

Through Auto-Scaling Group configuration you
can define:

minimum / maximum number of EC2 instances
to be launched by the Auto-Scaling Group
Availability Zones / subnets used

Remediation:
Using the Amazon unified command line
interface:

« List existing load balancers:
aws elb describe-load-balancers --query
'LoadBalancerDescriptions[*].{ELBName:LoadBa
lancerName}'
or

» Create new load balancer:
aws elb create-load-balancer --load-balancer-
name <web_tier_elb> --listeners
<listener_config> --subnets
<web_tier_elb_subnet1>
<web_tier_elb_subnet2> --security-groups
<web_tier_elb_security_group>

» Attached load balancer from previous steps
to autoscaling group:
aws autoscaling attach-load-balancers --load-
balancer-names <web_tier_elb> --auto-scaling-
group-name
<web_tier_autoscaling_group_name>

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

43

iriusrisk

aws-tier-3.14

Associate App Tier
Auto-Scaling Group to
ELB

Elastic Load Balancing automatically distributes
incoming application traffic across multiple
Amazon EC2 instances within a VPC.

It enables greater levels of fault tolerance in your
applications, seamlessly providing the required
amount of load balancing capacity needed to
distribute application traffic across 1 or more
Availability Zones within a VPC.

Elastic Load Balancing must be integrated with
Auto Scaling Groups to ensure that you have
availability of compute resources in the event of
a failure.

Integrating Auto Scaling Groups with an Elastic
Load Balancer will help provide high availability
and back-end EC2 instance scaling.

Through Auto-Scaling Group configuration you
can define:

minimum / maximum number of EC2 instances
to be launched by the Auto-Scaling Group
Availability Zones / subnets used

Remediation:
Using the Amazon unified command line
interface:

« List existing load balancers:
aws elb describe-load-balancers --query
'LoadBalancerDescriptions[*].{ELBName:LoadBa
lancerName}'

or

» Create new load balancer:
aws elb create-load-balancer --load-balancer-
name <app_tier_elb> --scheme internal --
listeners <listener_config> --subnets
<app_tier_subnet1> <app_tier_subnet2> --
security-groups <app_tier_elb_security_group>

» Attached load balancer from previous steps
to autoscaling group:
aws autoscaling attach-load-balancers --load-
balancer-names <app_tier_elb> --auto-scaling-
group-name
<app_tier_autoscaling_group_name>

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

44

iriusrisk

aws-tier-3.8

Configure Health
Check for Web Tier
ELB

By default, an Auto-Scaling Group periodically
uses the results of the EC2 instance status
checks to determine the health status of each
instance. If an instance fails the EC2 instance
status checks, Auto-Scaling marks the instance
as unhealthy and replaces the instance.

However, if you have attached one or more
Elastic Load Balancing (ELB) load balancers to
your Auto-Scaling Group and the instance fails
the ELB health checks, Auto-Scaling does not
replace the instance.

Amazon ELB will periodically sends pings,
attempt connections, or sends requests to test
the EC2 instances, these tests are called health
checks.

The status of the instances that are healthy at
the time of the health check is InService.

The status of any instances that are unhealthy at
the time of the health check is OutOfService.

The load balancer performs health checks on all
registered instances, whether the instance is in a
healthy state or an unhealthy state. The load
balancer routes requests only to the healthy
instances. When the load balancer determines
that an instance is unhealthy, it stops routing
requests to that instance. The load balancer
resumes routing requests to the instance when it
has been restored to a healthy state

Ensure availability of back-end EC2 instances
associated with an Amazon ELB through
application layer health check (ex: http) instead
of TCP health checks.

Remediation:
Using the Amazon unified CLI:

» Create a JSON file containing the attributes
you want to modify and save it locally as
/tmp/ELBhealthcheck.json:

"Target": "<string>",

"Interval": <integer>,

"Timeout": <integer>,
"UnhealthyThreshold": <integer>,
"HealthyThreshold": <integer>

» Modify Web tier ELB to include appropriate
health check:
aws elb configure-health-check --load-balancer-
name <web_tier_elb> --health-check
file:///tmp/ELBhealthcheck.json

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

45

iriusrisk

aws-tier-3.9

Configure Health
Check for App Tier ELB

By default, an Auto-Scaling Group periodically
uses the results of the EC2 instance status
checks to determine the health status of each
instance. If an instance fails the EC2 instance
status checks, Auto-Scaling marks the instance
as unhealthy and replaces the instance.

However, if you have attached one or more
Elastic Load Balancing (ELB) load balancers to
your Auto-Scaling Group and the instance fails
the ELB health checks, Auto-Scaling does not
replace the instance.

Amazon ELB will periodically sends pings,
attempts connections, or sends requests to test
the EC2 instances, these tests are called health
checks.

The status of the instances that are healthy at
the time of the health check is InService.

The status of any instances that are unhealthy at
the time of the health check is OutOfService.

The load balancer performs health checks on all
registered instances, whether the instance is in a
healthy state or an unhealthy state. The load
balancer routes requests only to the healthy
instances. When the load balancer determines
that an instance is unhealthy, it stops routing
requests to that instance. The load balancer
resumes routing requests to the instance when it
has been restored to a healthy state

Ensures availability of back-end EC2 instances
associated with an Amazon ELB through
application layer health check (ex: http) instead
of TCP health checks.

Remediation:
Using the Amazon unified CLI:

» Create a JSON file containing the attributes
you want to modify and save it locally as
/tmp/ELBhealthcheck.json:

"Target": "<string>",

"Interval": <integer>,

"Timeout": <integer>,
"UnhealthyThreshold": <integer>,
"HealthyThreshold": <integer>

» Modify App tier ELB to include appropriate
health check:
aws elb configure-health-check --load-balancer-
name <app_tier_elb> --health-check
file:///tmp/ELBhealthcheck.json

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

46

iriusrisk

aws-tier-5.2 Enable the ELB logging

Elastic Load Balancing automatically distributes
incoming application traffic across multiple
Amazon EC2 instances in the a VPC. It enables
you to achieve greater levels of fault tolerance in
your applications, seamlessly providing the
required amount of load balancing capacity
needed to distribute application traffic.

AWS Elastic Load Balancers (ELBs) can record
all incoming requests sent to the load balancer
and store within logs on S3. This allows for
diagnosing application failures and analyzing
web traffic and security analysis of incoming
traffic

Remediation:
Using the Amazon unified CLI:

» Create a JSON file containing the attributes
you want to modify and save it locally as
/tmp/ElbLogs.json:

"AccessLog": {
"Enabled": true,
"S3BucketName": "string",
"Emitinterval": integer,
"S3BucketPrefix": "string"
}
}

* Update the Load Balancer attributes:
aws elb modify-load-balancer-attributes --load-
balancer-name <elb_name> --load-balancer-
attributes file:///tmp/ElbLogs.json

Recommended

Not Tested

Technical Countermeasure Report
User Accounts

47

iriusrisk

aws-tier-6.1

Set Root Domain Alias
Record to ELB

Amazon Route 53 translates friendly domains
names like www.example.com into IP addresses
like 192.0.2.1. Amazon Route 53 responds to
DNS queries using a global network of
authoritative DNS servers, which reduces
latency.

When someone enters your domain name in a
browser, a DNS request is forwarded to the
nearest Amazon Route 53 DNS server in a
global network of authoritative DNS servers.
Amazon Route 53 responds with the IP address
that you specified.

Each domain has an associated hosted zone
which contains the resource records pointing to
each layer of the application.

A private hosted zone is a container that holds
information about how you want to route traffic
for a domain and its subdomains within the
Amazon Virtual Private Cloud (Amazon VPC). To
begin, you create a private hosted zone and
specify the Amazon VPCs that you want to
associate with the hosted zone. You then create
resource record sets that determine how
Amazon Route 53 responds to queries for your
domain and subdomains within and among your
Amazon VPCs.

Route53 provides special record type called
Alias that allows creation of an A record for the
root domain and points it to the fully qualified
domain of the Elastic Load Balancer (ELB)
associated with the web-server layer or Amazon
CloudFront.

In the same way records for all other layers
should be created in order to allow flexibility in
the application design and not hard-code the
FQDN of a resource.

Remediation:
Using the Amazon unified command line
interface:

» Create a hosted zone for YourDomain.com:
aws route53 create-hosted-zone --name
<your_domain.com> --caller-reference
<any_string>

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

48

iriusrisk

aws-tier-6.13

Allow connectivity to
the VPC Internet
Gateway (IGW) and
associate the Routing
Table with Web tier
ELB subnet (by default
route (0.0.0.0/0))

A route table contains a set of rules, called
routes, that are used to determine where
network traffic is directed.

Each subnet in your VPC must be associated
with a route table; the table controls the routing
for the subnet. A subnet can only be associated
with one route table at a time, but you can
associate multiple subnets with the same route
table.

The default route (0.0.0.0/0) should be pointing
to the Internet Gateway in order to provide
internet connectivity for the Web tier ELB.

Remediation:
Using the Amazon unified command line
interface:

» For the above route tables, if the default
route (0.0.0.0/0) exists but it doesn't have an
IGW configured as gateway:
aws ec? replace-route --route-table-id
<route_table_id> --destination-cidr-block
0.0.0.0/0 --gateway-id <vpc_igw>

» For the above route tables, if the default
route (0.0.0.0/0) doesn't exist:
aws ec2 create-route --route-table-id
<route_table_id> --destination-cidr-block
0.0.0.0/0 --gateway-id <vpc_igw>

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

49

iriusrisk

Use a Web-Tier ELB
Security Group to
accept only
HTTP/HTTPS

aws-tier-6.17

A security group acts as a virtual firewall for your
instance to control inbound and outbound traffic.
When you launch an instance in the AWS Virtual
Private Cloud (VPC), you can assign the
instance up to five security groups. Security
groups act at the instance level, not the subnet
level. Therefore, each instance in a subnet in
your VPC could be assigned to a different set of
security groups. If you don't specify a particular
group at launch time, the instance is
automatically assigned to the default security
group for the VPC.

For each security group, you add rules that
control the inbound traffic to instances, and a
separate set of rules that control the outbound
traffic.

The SG associated with the Web tier ELB should
allow connectivity from any source IP (0.0.0.0/0)
only for the HTTP (TCP 80) and HTTPS (TCP
443) ports.

Remediation:
Using the Amazon unified command line
interface:

« First remove all the ingress rules for the
security group associated with the Web tier ELB:
aws ec2 describe-security-groups --group-id
<security_group_id> --query
"SecurityGroups|[0].IpPermissions" >
/tmp/IpPermissions.json

aws ec2 revoke-security-group-ingress --group-
id <security_group_id> --ip-permissions
file:///tmp/IpPermissions.json

« create locally the below json file containing
ingress rules for any source IP (0.0.0.0/0) only
for the HTTP (TCP 80) and HTTPS (TCP 443)
ports and name it IpPermissions.json:

[

{

"PrefixListlds": [],
"FromPort": 80,
"IpRanges™: [

{

"Cidrlp": "0.0.0.0/0"
}

],

"ToPort": 80,
"IpProtocol": "tcp"”,
"UserldGroupPairs": []

"PrefixListlds": [],
"FromPort": 443,
"IpRanges™: [

"Cidrlp": "0.0.0.0/0"
}
l
"ToPort": 443,

"IpProtocol": "tcp"”,
"UserldGroupPairs": []

» Add to the security group associated with
the Web tier ELB the above ingress rules:
aws ec?2 authorize-security-group-ingress --
group-id <security_group_id> --ip-permissions

Recommended

Not Tested

Technical Countermeasure Report
User Accounts

50

iriusrisk

aws-tier-6.18

Do not use Web tier
ELB Security Group in
the Auto Scaling launch
configuration of any
other tier (Web, App)

When you use the AWS Management Console
to create a load balancer in a VPC, you can
choose an existing security group for the VPC or
create a new security group for the VPC. If you
choose an existing security group, it must allow
traffic in both directions to the listener and health
check ports for the load balancer. If you choose
to create a security group, the console
automatically adds rules to allow all traffic on
these ports.

Be sure to review the security group rules to
ensure that they allow traffic on the listener and
health check ports for the new load balancer.
When you delete your load balancer, this
security group is not deleted automatically.

If you add a listener to an existing load balancer,
you must review your security groups to ensure

they allow traffic on the new listener port in both
directions.

The web-tier ELB is the only one that is public
facing and should have rules to allow inbound
traffic to the application ports (ex: HTTP and
HTTPS) from any IP source (0.0.0.0/0).

The outbound security group rules for the web-
tier ELB should be restricted to only the backend
web-server instances for the appropriate
application ports.

Associating the web-tier ELB security group to
any other instances that shouldn't be publicly
accessible exposes them to unauthorized
access.

Remediation:
Using the Amazon unified command line
interface:

» Create new launch configuration using the
correct security groups for Web and/or App tier:
aws autoscaling create-launch-configuration --
launch-configuration-name
<web_tier_launch_config> --image-id
<web_tier_ami> --key-name <your_key_pair> --
security-groups
<web_tier_security_group>/<app_tier_security_g
roup --instance-type <desired_instance_type> --
iam-instance-profile
<web_tier_instance_profile>/<app_tier_instance
_profile>

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

51

iriusrisk

Create the App tier
ELB Security Group to
only accept
HTTP/HTTPS

aws-tier-6.21

A security group acts as a virtual firewall for your
instance to control inbound and outbound traffic.
When you launch an instance in the AWS Virtual
Private Cloud (VPC), you can assign the
instance to up to five security groups. Security
groups act at the instance level, not the subnet
level. Therefore, each instance in a subnet in
your VPC could be assigned to a different set of
security groups. If you don't specify a particular
group at launch time, the instance is
automatically assigned to the default security
group for the VPC.

For each security group, you add rules that
control the inbound traffic to instances, and a
separate set of rules that control the outbound
traffic.

The SG associated with the App tier ELB should
allow connectivity from the security group
associated with Web tier instances only for the
HTTP (TCP 80) and HTTPS (TCP 443) ports.

The defaults for HTTP and HTTPS are used as
an example, any other ports would apply
depending on the application design.

Remediation:
Using the Amazon unified command line
interface:

« First remove all the ingress rules for the
security group associated with the App tier ELB:
aws ec2 describe-security-groups --group-id
app_tier_elb_security_group --query
"SecurityGroups|[0].IpPermissions" >
/tmp/IpPermissions.json

aws ec2 revoke-security-group-ingress --group-
id app_tier_elb_security_group --ip-permissions
file:///tmp/IpPermissions.json

« create locally the below json file containing
ingress rules for HTTP (TCP 80) and HTTPS
(TCP 443) ports only from and name it
IpPermissions.json:

[

{

"PrefixListlds": [],
"FromPort": 80,
"IpRanges": [l,
"ToPort": 80,
"IpProtocol": "tcp",
"UserldGroupPairs™: [

"Userld":
"<aws_account_number>",
"Groupld": "<span style="font-style:
italic;"><<span style="font-style:
italic;">web_tier_security_group"
}
]
h
{
"PrefixListlds": [],
"FromPort": 443,
"IpRanges": [],
"ToPort": 443,
"IpProtocol": "tcp"”,
"UserldGroupPairs™: [

"Userld":

Recommended

Not Tested

Technical Countermeasure Report
User Accounts

52

"<aws_account_number>",
"Groupld": "<span style="font-style:
italic;"><<span style="font-style:
italic;">web_tier_security_group>"
}
]
}
]

» Add to the security group associated with
the App tier ELB the above ingress rules:
aws ec?2 authorize-security-group-ingress --
group-id app_tier_elb_security_group --ip-
permissions file:///PathTo/IpPermissions.json

iriusrisk

aws-tier-6.22

Create the App tier
Security Group to allow
inbound connections
from App tier ELB
Security Group for
explicit ports

A security group acts as a virtual firewall for your
instance to control inbound and outbound traffic.
When you launch an instance in the AWS Virtual
Private Cloud (VPC), you can assign the
instance to up to five security groups. Security
groups act at the instance level, not the subnet
level. Therefore, each instance in a subnet in
your VPC could be assigned to a different set of
security groups. If you don't specify a particular
group at launch time, the instance is
automatically assigned to the default security
group for the VPC.

For each security group, you add rules that
control the inbound traffic to instances, and a
separate set of rules that control the outbound
traffic.

This is required for both the configured port and
protocol for the listener on the back-end instance
and the port and protocol used for the health
check.

This protects the App-server tier from
unauthorized access, it is recommended to add
inbound security group rules that allow traffic for
the specific application protocol and ports by
referencing as source the security group
associated with the App tier ELB.

Remediation:
Using the Amazon unified command line
interface:

« First remove all the ingress rules for the App
tier security group (use the
"AppTierSecurityGroup" element from Audit
procedure):
aws ec2 describe-security-groups --group-id
app_tier_security_group --query
"SecurityGroups[0].IpPermissions" >
/tmp/IpPermissions.json

aws ec2 revoke-security-group-ingress --group-
id app_tier_security_group --ip-permissions
file:///tmp/IpPermissions.json

» Add an ingress rule for a specific port, using
--source-group option to specify the App tier ELB
security group as the source of the connections:
aws ec2 authorize-security-group-ingress --
group-id app_tier_security_group --protocol tcp --
port specific_port --source-group

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

53

iriusrisk

aws-tier-6.26

Create the App tier
ELB as Internal

An internal load balancer routes traffic to your
EC2 instances in private subnets using private IP
addresses.

Create an internal load balancer and register the
database servers with it. The web servers
receive requests from the Internet-facing load
balancer and send requests for the database
servers to the internal load balancer. The
database servers receive requests from the
internal load balancer.

When an internal load balancer is created, it
receives a public DNS name with the following
form:

internal-name-
123456789.region.elb.amazonaws.com

The DNS servers resolve the DNS name of your
load balancer to the private IP addresses of the
load balancer nodes for your internal load
balancer. Each load balancer node is connected
to the private IP addresses of the back-end
instances that are in its Availability Zone using
elastic network interfaces.

Creating the App tier ELB as internal will prevent
access to the app tier from the Internet and will
allow access from the Web tier instances.

Remediation:
Using the Amazon unified command line
interface:

» Create new internal ELB for your App tier:
aws elb create-load-balancer --load-balancer-
name app_tier_elb --scheme internal --listeners
listener_config --subnets app_tier_subnet1
app_tier_subnet2 --security-groups
app_tier_elb_security_group

» Register App tier instances with the new
App tier ELB:
aws elb register-instances-with-load-balancer --
load-balancer-name app_tier_elb --instances
<app_tier_instance1> <app_tier_instance2>
<app_tier_instance3>

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

54

iriusrisk

aws-tier-6.5

Create subnets for the
Web Tier ELB

You can create a VPC that spans multiple
Availability Zones. After creating a VPC, you can
add one or more subnets in each Availability
Zone. Each subnet must reside entirely within
one Availability Zone and cannot span zones.
Availability Zones are distinct locations that are
engineered to be isolated from failures in other
Availability Zones. By launching instances in
separate Availability Zones, you can protect your
applications from the failure of a single location.
AWS assigns a unique ID to each subnet.

When you create a subnet, you specify the CIDR
block for the subnet. The CIDR block of a subnet
shouldn't be the same as the CIDR block for the
VPC (for a single subnet in the VPC). The
allowed block size is between a /28 netmask and
/16 netmask. If you create more than one subnet
in a VPC, the CIDR blocks of the subnets must
not overlap.

Some AWS regions have more than 2 availability
zones and it is recommended to use more than 2
where possible.

At least 2 subnets in 2 different availability zones
(AZ) should be created in order to have fault
tolerance and high availability from the
perspective of resource deployment.

Remediation:
Using the Amazon unified command line
interface:

» Create subnets for Web tier ELB, and note
the subnet id:
aws ec?2 create-subnet --vpc-id application_vpc -
-cidr-block desired_cidr

» Tag the above subnets with the Web tier
ELB tags:
aws ec?2 create-tags --resources
web_tier_elb_subnet1 web_tier_elb_subnet2 --
tags
Key=public_tier_tag,Value=public_tier_tag_value

Recommended

Not Tested

Technical Countermeasure Report

User Accounts

55

Component: MySQL

RESTRICT-
SERVICE

Restrict access to the
service at the network
layer to reduce
exposure

Access to services should be restricted to
expected sources, limiting exposure of the
service and its attack surface; and the likelihood
of a malicious actor gaining access to the
system.

» Apply network layer security controls so that
only the necessary and expected IP addresses
are permitted access to connect to the service.

Recommended

Not Tested

CWE-89-
PREPARED

Use prepared
statements for all
database queries

Database injection attacks, such as SQLi (SQL
Injection) rely on sending tainted client-side data
which is used in dynamic SQL queries at the
server-side in an unsafe manner. For example,
creating queries by concatenating strings using
untrusted data may result in vulnerable code , for
example an attacker may append an 'OR'
statement through the provided customerName
parameter passed to the following code to
bypass the checks and return additional data
from the database:

« String query = "SELECT user FROM users
WHERE name ="
+ request.getParameter("customerName")+"";
Using prepared statements with carefully
controlled and validated input conditions
mitigates against SQLi and related attacks.

» Database queries should always be made
using prepared statements or parameterized
queries.

* Queries through an Object-Relational
mapper should also be treated as tainted input,
and made using prepared statements to mitigate
the threat.

Required

Not Tested

PATCH-
SERVICE

Apply required security
patches to the service

Vendors and other maintainers of software
release patches in response to security flaws
and other bugs in their products. The longer a
system is exposed with a known security
vulnerability, the easier to compromise it is as
the exploit became public, they get included into
automated exploitation suites like Metasploit and
a wider audience is able to exploit them.

» Apply patches and other software updates in
a timely manner to prevent unexpected failures
or exploitation.

+ Clearly define an approach for testing and
applying patches, in particular security patches,
with expected timescales. There is often a small
window between release of a patch, and
potentially malicious actors reverse-engineering
the patch to identify and exploit the flaw.

» Use a threat intelligence, vulnerability
scanning, or other alerting service to ensure the
project team is aware of issues within the project
or its components promptly.

Required

Not Tested

Technical Countermeasure Report

User Accounts

56

iriusrisk

CWE-306-
SERVICE

Require authentication
before presenting
restricted data

The application should ensure users have
undergone an Identification and Verification
(ID&V) process before allowing access to secret,
sensitive or otherwise restricted data. For less
sensitive but still restricted data, simple
verification of the location of the user may suffice
(e.g. IP restrictions).

» For non-sensitive but non-public data,
access could be restricted by IP address, for
example limiting access to internal networks,
workstations, or gateways

» For more sensitive data, TLS client-side
certificates may be appropriate

» Where secret or other sensitive data is
handled, a full authentication process to identify
and validate users with single or multi-factor
authentication may be required

Implemented

Failed

RESTRICT-
ACCESS-
DATABASE

Access the data store
from an account with
the least privileges
necessary

Use an account with only the minimum set of
permissions required to access the data store.
The account should not be able to perform
operations that are not explicitly required by the
component that performs these operations.

For example, if a web application needs to read
data from certain tables and insert and update
data from others, then a database account with
only those specific permissions should be used
by the application server.

Implemented

Not Tested

Technical Countermeasure Report

User Accounts

57

	Summary
	Architectural Diagrams
	Required Countermeasures
	Component: API GW
	Component: MySQL

	Implemented Countermeasures
	Component: API GW
	Component: MySQL

	Rejected Countermeasures
	Component: API GW

	Countermeasure Test Results
	Failed
	Component: API GW
	Component: MySQL

	Passed
	Component: API GW

	Not tested
	Component: API GW
	Component: ELB - Elastic Load Balancer
	Component: MySQL

	Appendix A: Countermeasure Details
	Component: API GW
	Component: ELB - Elastic Load Balancer
	Component: MySQL

